Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(11): e2312596121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437555

RESUMO

Self-assembled DNA crystals offer a precise chemical platform at the ångström-scale for DNA nanotechnology, holding enormous potential in material separation, catalysis, and DNA data storage. However, accurately controlling the crystallization kinetics of such DNA crystals remains challenging. Herein, we found that atomic-level 5-methylcytosine (5mC) modification can regulate the crystallization kinetics of DNA crystal by tuning the hybridization rates of DNA motifs. We discovered that by manipulating the axial and combination of 5mC modification on the sticky ends of DNA tensegrity triangle motifs, we can obtain a series of DNA crystals with controllable morphological features. Through DNA-PAINT and FRET-labeled DNA strand displacement experiments, we elucidate that atomic-level 5mC modification enhances the affinity constant of DNA hybridization at both the single-molecule and macroscopic scales. This enhancement can be harnessed for kinetic-driven control of the preferential growth direction of DNA crystals. The 5mC modification strategy can overcome the limitations of DNA sequence design imposed by limited nucleobase numbers in various DNA hybridization reactions. This strategy provides a new avenue for the manipulation of DNA crystal structure, valuable for the advancement of DNA and biomacromolecular crystallography.


Assuntos
5-Metilcitosina , DNA , Cristalização , Catálise , Cristalografia
2.
Angew Chem Int Ed Engl ; 60(1): 197-201, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-32956566

RESUMO

The demand for transporting coreactant to emitter and short lifetime of the radicals in electrochemiluminescence (ECL) emission inhibit greatly its application in cytosensing and microscopic imaging. Herein we designed a dual intramolecular electron transfer strategy and tertiary amine conjugated polymer dots (TEA-Pdots) to develop a coreactant-embedded ECL mechanism and microimaging system. The TEA-Pdots could produce ECL emission at +1.2 V without need of coreactant in test solution. The superstructure and intramolecular electron transfer led to unprecedented ECL strength, which was 132 and 45 times stronger than those from the mixture of Pdots with TEA at equivalent and 62.5 times higher amounts, respectively. The ECL efficiency was even higher than that of typical [Ru(bpy)3 ]2+ system. Therefore, this strategy and coreactant-embedded ECL system could be used for in situ ECL microimaging of membrane protein on single living cells without additional permeable treatment for transporting coreactant. The feasibility and validity were demonstrated by evaluating the specific protein expression on cell surface. This work opens new avenues for ECL applications in single cell analysis and dynamic study of biological events.


Assuntos
Técnicas Eletroquímicas/métodos , Medições Luminescentes/métodos , Proteínas de Membrana/química , Humanos
3.
Angew Chem Int Ed Engl ; 59(26): 10446-10450, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32196901

RESUMO

Metal-organic frameworks (MOFs) have limited applications in electrochemistry owing to their poor conductivity. Now, an electroactive MOF (E-MOF) is designed as a highly crystallized electrochemiluminescence (ECL) emitter in aqueous medium. The E-MOF contains mixed ligands of hydroquinone and phenanthroline as oxidative and reductive couples, respectively. E-MOFs demonstrate excellent performance with surface state model in both co-reactant and annihilation ECL in aqueous medium. Compared with the individual components, E-MOFs significantly improve the ECL emission due to the framework structure. The self-enhanced ECL emission with high stability is realized by the accumulation of MOF cation radicals via pre-reduction electrolysis. The self-enhanced mechanism is theoretically identified by DFT. The mixed-ligand E-MOFs provide a proof of concept using molecular crystalline materials as new ECL emitters for fundamental mechanism studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...